
FASTSWITCH: OPTIMIZING CONTEXT SWITCHING EFFICIENCY IN
FAIRNESS-AWARE LARGE LANGUAGE MODEL SERVING

Ao Shen 1 2 Zhiyao Li * 3 Mingyu Gao 2 3

ABSTRACT
The rapid progress of Large Language Models (LLMs) has driven the need for efficient inference systems capable
of serving numerous users and tasks concurrently. To better meet these demands, ensuring fairness in service is
crucial. Preemption-based scheduling achieves fairness by dynamically adjusting request priorities. However, in
the state-of-the-art inference system vLLM, the overhead caused by preemption-induced context switching remains
unresolved. This inefficiency arises from three main factors: inadequate I/O utilization, GPU idle, and unnecessary
I/O transmission, all of which increase latency and reduce efficiency. We introduce FastSwitch, a fairness-aware
serving system that mitigates the overhead of frequent context switching in LLM serving while preserving fairness.
Our approach includes innovations such as an I/O-aware KV cache manager, a Multithreading Swap Manager
for asynchronous swapping handling, and a KV cache reuse mechanism to reduce the volume of data swapping.
Our evaluation shows that FastSwitch achieves a speedup of 1.4-5.8× across different tail Time-to-First-Token
(TTFT), with improvements of up to 5.8×, 4.3×, and 3.7× at P95, P99, and P99.9, respectively. Additionally,
we observe the P99.9 Time-Between-Tokens (TBT) improvement of up to 11.2× and the throughput increase of
up to 1.44×. These results demonstrate FastSwitch’s effectiveness in ensuring fairness without compromising
performance, even with frequent priority adjustments.

1 INTRODUCTION

Large Language Models (LLMs) like GPT-3 (Brown, 2020),
LLaMA (Touvron et al., 2023), and Qwen (Yang et al., 2024)
have revolutionized AI by powering applications such as
language translation, conversational agents, and code gen-
eration (Nijkamp et al., 2023; Liu et al., 2024b; Zhu et al.,
2024; Hendrycks et al., 2020; Minaee et al., 2024; Gong
et al., 2018; Bisk et al., 2020; OpenAI, 2024). With ex-
tensive parameters and diverse pretraining datasets, these
models set new NLP benchmarks. Consequently, Model-as-
a-Service (MaaS) platforms for deploying LLMs have seen
widespread adoption (Zheng et al., 2023; Kwon et al., 2023;
Sheng et al., 2023; Agrawal et al., 2024; 2023; Aminabadi
et al., 2022). However, to efficiently process numerous
inference requests, transformer-based LLM serving typi-
cally requires storing the request’s key-value (KV) cache in
GPU memory. While GPUs offer High-Bandwidth Memory
(HBM) (Larimi et al., 2020), which significantly boosts I/O
performance, this memory is both expensive and limited in
capacity. The associated costs and limited availability of

*Equal contribution 1Department of Computer and Information
Technology, Purdue University, West Lafayette, USA 2Shanghai
Qi Zhi Institute, Shanghai, China 3Institute for Interdisciplinary
Information Sciences, Tsinghua University, Beijing, China. Corre-
spondence to: Ao Shen <shen634@purdue.edu>.

HBM pose challenges to scalability. Moreover, advanced
features such as Chain-of-Thought (CoT) reasoning and
multimodal inputs (Wei et al., 2022; Koh et al., 2024) ne-
cessitate handling longer context lengths, further increasing
the demand for resources. To better serve a wide range
of requests and users, while ensuring that as many users’
needs are met as possible, fairness in serving becomes a
critical concern. Many LLM serving systems emphasize
fairness by dynamically adjusting request priorities during
runtime based on Service Level Objective (SLO) metrics.
Given the ever-present constraints on GPU memory, pre-
emption mechanisms are essential for managing resources
efficiently and maintaining fairness. Recent works such
as VTC (Sheng et al., 2024), Andes (Liu et al., 2024a),
QLM (Patke et al., 2024), FastServe (Wu et al., 2023), and
LLMS (Yin et al., 2024) have explored various strategies
for preemptive scheduling to ensure fairness and mitigate
issues like head-of-line blocking in LLM serving systems.
Multi-turn conversations present another important scenario
for preemption, as the next turn in a conversation might
be requested after a certain delay. In such cases, the KV
cache of a completed conversation needs to be preempted
and transferred to CPU memory for future use.

However, since most systems (Kwon et al., 2023; Zheng
et al., 2023) adopt swapping as the default preemption ap-
proach, each preemption results in context switching. In

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

our work, context switching refers to the swapping of the
KV cache of the preempted requests, requiring large KV
cache to be swapped between GPU and CPU memory. In the
state-of-the-art serving system vLLM, the page-based KV
cache management strategy used to achieve higher through-
put causes fragmented memory allocation, leading to poor
utilization of PCIe I/O bandwidth. Additionally, the current
scheduling design causes preemption to stall inference, leav-
ing the GPU idling. What’s more, when serving multi-turn
conversations, there is redundant swap out volume of pre-
vious conversation across multiple turns. These challenges
introduce significant overhead and degrade key performance
metrics such as TTFT and TBT, ultimately reducing the
overall Quality of Experience (QoE) (Liu et al., 2024a). As
shown in Figure 1, the stall time caused by preemption can
be several times longer than the inference time of a single
iteration.

Addressing the overhead from frequent context switching
is crucial for improving the performance and scalability of
LLM serving systems. Prior works (Sun et al., 2024; Gao
et al., 2024; Wu et al., 2023) propose strategies to mitigate
this overhead, but they either disrupt vLLM’s KV cache
management, struggle with issues from asynchronous meth-
ods aimed at avoiding GPU idling, or fail to effectively han-
dle redundant KV cache transfers. Consequently, they fail to
provide a lightweight and effective solution. Intuitively, we
can address this problem by reducing call stack overhead,
improving bandwidth utilization, and minimizing redundant
transfers. In response, we introduce FastSwitch, a new serv-
ing system that optimizes preemptive context switching in
LLM inference with minimal additional cost. FastSwitch
leverages an I/O-aware KV cache management strategy,
the Dynamic Block Group Manager, which enhances band-
width utilization and reduces kernel dispatch overhead by
allocating memory for KV cache at a coarser granularity.
Additionally, FastSwitch integrates a Multithreading Swap
Manager to asynchronously manage KV cache transfers,
minimizing delays from cache dependencies during context
switching and improving token generation efficiency. Fi-
nally, the KV Cache Reuse Mechanism, integrated into the
Dynamic Block Group Manager, manages and reuses KV
cache copies across multi-turn dialogues, thereby reducing
unnecessary I/O usage. As a result, FastSwitch effectively
addresses the overhead from frequent context switching
caused by high-frequency priority changes, ensuring fair-
ness and responsiveness in dynamic, high-demand environ-
ments while maintaining efficient resource utilization. In
summary, this paper makes the following key contributions:

• Priority-based Serving System: We propose a new
priority-based serving system, FastSwitch, that enables
efficient preemptive context switching in LLM serving
by balancing fairness, throughput, and performance.
FastSwitch synergistically integrates three optimiza-

tions to address key challenges like bandwidth under-
utilization, GPU idling, and unnecessary I/O usage.

• In-depth Evaluation: Demonstrate substantial improve-
ments on NVIDIA GPUs compared with vLLM, par-
ticularly under high priority-update frequency. Specifi-
cally, we achieve a speedup in TTFT of up to 1.4-5.8×,
in TBT of up to 11.2×, and an increase in Throughput
of up to 1.44×.

• Ensuring Fairness without Compromising Perfor-
mance: Ensure fairness among concurrent requests
without compromising performance, allowing reliable
and efficient LLM deployment in resource-constrained
environments.

2 BACKGROUND AND MOTIVATION

2.1 Preemption-based Scheduling in LLM Inference

Preemption-based scheduling is crucial in LLM inference to
ensure fairness and manage requests with varying priorities
due to constrained HBM. It allows high-priority tasks to
preempt lower-priority ones and reallocate resources dy-
namically. There are two main preemption methods: recom-
putation, which halts a task and recomputes its KV cache
upon resumption, increasing latency and resource use, es-
pecially for long contexts; and swapping, which transfers
the KV cache between GPU and CPU memory, avoiding re-
computation. Systems like vLLM effectively use swapping.
Recent works explore various preemptive scheduling strate-
gies: VTC (Sheng et al., 2024) addresses fair token-level
scheduling, Andes (Liu et al., 2024a), FASTSERVE (Wu
et al., 2023), and QLM (Patke et al., 2024) focus on miti-
gating head-of-line blocking and context switching latency.
And LLMS (Yin et al., 2024) manages multiple LLM con-
texts across apps. Our design builds on vLLM by optimizing
its swapping efficiency.

2.2 Motivation

P50 P90 P95 P99 P99.9
Percentile

0

1

2

3

La
te

nc
y

B
re

ak
do

w
n Execution

Swap

Figure 1. Latency breakdown
across percentiles.

999795939085
Percentile

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Figure 2. Only a small ratio of
requests need to wait for the KV
cache in most iterations.

Observation: Context Switching Overhead. Preemptive
context switching, necessary for managing dynamic work-

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

loads and prioritizing tasks, introduces significant overheads,
particularly from KV cache I/O operations. These affect
performance metrics like Time-to-First-Token (TTFT) and
Time-Between-Tokens (TBT). The impact worsens with
longer contexts and increased preemption.

An experiment using the LLaMA-8B model served with
vLLM on an A10 GPU involved processing 1,000 multi-
turn requests from the ShareGPT dataset with request rate
of 1 req/s and priority updates every 100 iterations. We
normalized the latency by setting the execution time of
inference to 1. The latency penalty from preemption was
measured as KV cache swapping time.

Figure 1 shows that P99 latency is approximately 1.6 times
higher than the P50, with swapping-induced stall time ac-
counting for about 59.9% of P99 latency. This reveals sig-
nificant performance degradation in high-stress scenarios,
which becomes even more pronounced at P99.9 where the
total latency increases to nearly 2x the inference time.

Memory
Compute

Host

Memcpy DtoH

(a) Fixed Size Block Based Preemption

(b) Dynamic Block Group Based Preemption

Time Elapsed

Memory
Compute

Host
Save

cudaGraphLaunch

cudaStreamSynchronize

cudaMemcpyAsync Dispatch

cudaGraph Execution

Figure 3. Timeline comparison of fixed-size block based preemp-
tion and dynamic block group based preemption.

Challenge #1: Low Bandwidth Utilization. While
vLLM’s KV cache management policy effectively reduces
internal fragmentation by using non-contiguous virtual
memory for the KV cache, optimizing swapping of the
KV cache remains a significant challenge. As illustrated
in Figure 3(a), performance bottlenecks arise due to sub-
optimal KV cache swapping granularity, such as small 128
KB KV cache swapping granularity in LLaMA-8B. The
dispatch overhead for each cudaMemcpyAsync call exceeds
its 10 µs execution time, leading to I/O idling This issue is
further exacerbated by the fact that the transfer size is below
PCIe 4.0’s optimal 320 KB, thus reducing efficiency. In this
experimental setting, dispatch time accounts for 90%-95%
of the total transmission time.

Simply increasing the block size in vLLM could cause inter-
nal fragmentation. And it would undermine the memory uti-
lization efficiency that vLLM strives to achieve. To address
this, vLLM sets the default block size to 16 tokens, aiming

to strike a balance between memory efficiency and perfor-
mance. Traditional approaches that preallocate KV cache
memory increase fragmentation, while dynamic allocation
introduces complexitiy and overhead during context switch-
ing. Therefore, developing lightweight, adaptive memory
management strategies that align with vLLM’s policies is
critical for maintaining both efficient memory usage and
larger transfer granularity to better utilize bandwidth. This
remains a key challenge that needs to be addressed.

Solution 1. Instead of managing individual blocks, handling
memory in larger granularities helps us maintain memory
continuity and reduces the overhead associated with context
switching. The key insight is to build upon the existing
vLLM policy and allocate multiple contiguous blocks and
encapsulating them into a higher-level abstraction. This
abstraction allows for dynamic merging and splitting of
block groups. This approach not only enables more efficient
utilization of PCIe bandwidth during KV cache transfers
but also preserves the original high throughput.

Challenge #2: GPU Idling During Preemption. We evalu-
ated LLaMA-8B on an NVIDIA A10 GPU using a Markov
priority pattern (priority-update frequency = 0.02) with 500
multi-turn conversations from ShareGPT. As shown in the
figure, the impact of global priority updates across requests
is most pronounced in tail cases, where a significant pro-
portion of requests experience delays. In most scenarios,
KV cache transfers between CPU and GPU memory affect
only a subset of requests. Although most requests proceed
without interruption, the overhead from preemption can ex-
ceed a single inference step. This leads to inference stalls,
resulting in GPU remains idle.

Solution 2. By handling transfers asynchronously, we can
overlap swapping and inference, reducing GPU idle time
and improving token generation efficiency. This approach re-
duces context switching latency, prioritizes high-importance
tasks, and minimizes the performance impact of swapping-
related delays. However, in the scenario of LLM serving,
there are several challenges to achieving comprehensive
optimization and we will discuss them later.

0 10 20 30 40
Conversation Turns

0.0

0.5

1.0

C
D

F

0 10 20 30
Lengths (K)

0.0

0.5

1.0

C
D

F

Figure 4. ShareGPT conversation turns & lengths distribution.

Challenge #3: Contaminated CPU KV Cache Copies
in Multi-turn Conversations. Multi-turn conversations

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

are prevalent in real-world LLM applications, especially
in interactive systems like chatbots. Datasets such as
ShareGPT (ShareGPT, 2024), which contains 100K conver-
sations, reveal that 78% of interactions consist of multiple
turns, with an average of 5.5 turns per conversation (Fig-
ure 4). These conversations often involve lengthy contexts,
resulting in a large KV cache that must be maintained to pre-
serve contextual coherence across turns. However, the repet-
itive nature of multi-turn conversations leads to a significant
portion of the KV cache being recomputed unnecessarily in
subsequent turns. This introduces redundant computation.
To address this issue, AttentionStore (Gao et al., 2024) ex-
plored prefix reuse in multi-turn conversations, primarily
targeting the swap in process during the prefill phase. Their
approach transfers the KV cache to multi-tier storage after
each conversation is completed, maintaining a full backup
for future reuse. When a new conversation turn finishes, only
the incremental KV cache corresponding to the new turn is
swapped out, as the context from previous turns is already
preserved in the multi-tier storage. This reduces the overall
swap out volume. However, in the hardware setting where
memory resources for KV cache are solely allocated to GPU
and CPU memory, such an approach becomes challenging.
Not all requests can fully utilize KV cache copies stored
in CPU memory given that CPU memory is not unlimited.
Intuitively, when a high-priority request requires memory
allocation, the system prioritizes reclaiming memory from
lower-priority requests, which invalidates lower-priority re-
quests’ KV cache backups. This presents a new challenge:
to create a complete copy for prefill the next turn with pre-
fix, how we can minimize the unnecessary removal of the
previous context when the KV cache memory is preempted
by other tasks.

Solution 3. Given that KV cache backups in CPU memory
can be removed or contaminated by higher-priority requests,
we can track the released free block groups for the KV
cache copies. By continuously monitoring the validity of
each block group in real-time, we identify the valid por-
tions of the KV cache and minimize redundant KV cache
swapping. Specifically, the system synchronizes the status
of block groups and reuses valid smaller block group split
from original block group during multi-turn conversations.
Compared with completely swapping KV cache of all pre-
vious conversations in vLLM, this approach significantly
reduces the volume of KV cache that might be repeatedly
swapped out to CPU memory, thereby decreasing unneces-
sary I/O operations in constrained environment.

3 DESIGN OF FASTSWITCH

As shown in Figure 5, to achieve better fairness in LLM serv-
ing system, FastSwitch enhances the efficiency of preemp-
tive context switching. To address the challenges outlined in

Section 2.2, FastSwitch comprises three key optimizations
that work in concert to optimize performance and resource
utilization. The Dynamic Block Group Manager maxi-
mizes PCIe bandwidth utilization through larger-granularity
memory for KV cache, effectively addressing the challenges
of dynamic KV cache allocation and call stack overhead.
This manager also tracks block group usage and integrates
the KV Cache Reuse Mechanism to minimize the volume
of data transferred during preemption. Building on this
foundation, the Multithreading Swap Manager leverages
async swapping to improve token generation throughput.
Finally, the Priority Scheduler schedules high-priority re-
quests into the running batch based on the latest priorities.

Priority Scheduler

Dynamic Block Group Manager

Swap Manager

Allocate Free

Used Block Group Manager

Finished Swap In Request

Swap In Profiler

Running Batch

Swap Out

Swap Worker Thread

Main Thread

Req 0
Req 1

Free Block Group

Used Block Group

Block Table

Size
512 tokens
256 tokens
128 tokens

1D Contiguous Memory

...
...

Free Block Group Manager

Task Queue

Event Queue

High Priority

Low Priority

Req id Block id

Req id Block id

Req id Block id

Figure 5. FastSwitch system overview.

3.1 Dynamic Block Group Manager for Increased
Granularity and I/O Bandwidth Utilization

In this section, we propose the Dynamic Block Group Man-
ager to address Challenge #1. Previous work such as
Llumnix (Sun et al., 2024) tackled bandwidth inefficiencies
caused by insufficient granularity in I/O management. They
attempted to increase I/O utilization by adjusting the buffer
size, but their approach was still unable to fully exploit the
available bandwidth because of limited granularity. More-
over, their method introduced additional design complexity
and overhead due to the necessity of a second transfer when
merging data into the buffer. We introduce the Dynamic
Block Group Manager, an I/O-aware KV cache allocator.
This manager increases the granularity and size of KV cache
allocation, reducing dispatch time and improving I/O band-
width utilization. By leveraging the principles of buddy
allocation, the Dynamic Block Group Manager aims to al-
locate memory blocks that closely match the size required
by each request, thereby optimizing transfer efficiency. The
Dynamic Block Group Manager is designed to be pluggable
into existing systems. It seamlessly integrates with vLLM’s
KV cache management policy, maintaining high throughput
while improving I/O utilization during preemption.

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Dynamic Block Group Allocation and Management. The
key idea behind Dynamic Block Group Manager, is analo-
gous to the buddy allocator (Von Puttkamer, 1975) used in
operating systems. The memory for KV cache is allocated in
larger chunks referred to as block groups, each comprising
multiple contiguous vLLM blocks. Each request is assigned
one or more block groups to store its KV cache. The most
recently allocated block group for a request is considered
active. This active block group not only contains new KV
cache for the current request but can also be split into one or
more smaller block groups to serve other requests. We first
perform block/page-based preallocation similar to vLLM.
And then merge all blocks into an initial free block group.
Based on need on both size and address, this free block
group is subsequently split into two or three smaller groups.
The Dynamic Block Group Manager organizes block groups
through two primary subcomponents: the Free Block Group
Manager and the Used Block Group Manager.

To maintain optimal memory usage, the manager supports
dynamic splitting and merging of block groups. When no
matching free block group is available and a request’s mem-
ory requirement does not fully utilize a block group in the
Used Block Group Manager, the manager can split the block
group into smaller block groups. The unused portions are
then reallocated to accommodate other requests as needed.
Conversely, if multiple adjacent free block groups are avail-
able, they can be merged to form larger block groups. This
merging enhances memory continuity and further reduces
fragmentation. We initially set the expected size of the first
block group for each request to 60 blocks, which corre-
sponds to approximately 1,000 tokens when the block size
is 16 tokens. The manager dynamically adjusts this size to
meet the expected KV cache requirement of each request,
taking into account the current availability of free KV cache.

Bandwidth Utilization Improvement. The Dynamic Block
Group Manager enables larger granularity transfers by man-
aging memory at the block group level, reducing the number
of transfers and eliminating associated latency. As shown
in Figure 3 (b), compared to fixed-size blocks, our design
consolidates smaller memory operations into fewer, larger
transfers, thereby reducing dispatch overhead and improv-
ing PCIe utilization. Llumnix introduces an additional 2-
block buffer to merge the KV cache before performing a
secondary transfer. However, this granularity is insufficient
to fully utilize I/O bandwidth and the extra transfer brings
complexity and additional latency. Moreover, simply in-
creasing the buffer size risks excessive space usage, which
contradicts vLLM’s goal of minimizing waste through on-
demand allocation. Our approach not only improves I/O
utilization by providing better granularity but also avoids the
need for secondary transfer. For example, when deploying
LLaMa-8B on an NVIDIA A10 GPU, our method achieves
an average granularity of approximately 20 blocks per block

group. This result is observed across seven distinct frequen-
cies, with a median priority-update frequency of 0.02(once
every 50 iterations). This maximizes bandwidth efficiency
while avoiding the complication associated with secondary
transfer.

3.2 Multithreading Swap Manager for Optimizing
Token Generation Efficiency

Memcpy HtoD

(b) Async Running Only Preemption

(c) Multi-Threads Swap Manager Based Preemption

Time Elapsed

cudaGraphLaunch

cudaStreamSynchronize

cudaMemcpyAsync Dispatch

Memory
Compute

(a) No Async Preemption

Memory
Compute

Memory
Compute

Main Thread

Swap Worker Thread

cudaGraph Execution

Save

Save

Discard

Migrate

Figure 6. Comparison of varying degrees of asynchronous preemp-
tion.

To address Challenge #2, previous work like Attention-
Store (Gao et al., 2024) supports layer-wise asynchronous
swapping. However, this approach can interfere with the
execution of CUDA graphs during inference and increase
inference time, especially when swapping latency exceeds
inference time. The core challenge lies in the nature of
CUDA graphs, which are generated through static compila-
tion. If one attempts to integrate swapping subgraphs into
an existing execution graph, given that batch size is a pa-
rameter of the node in graph, it becomes necessary to iterate
over all possible batch size values across both the swapping
subgraph and the execution subgraph. This requires a sig-
nificant amount of GPU memory for the storage of CUDA
graphs because each CUDA graph needs to reserved space
for input, activations, and output. Also, profiling a new
graph on-the-fly every time is impractical. On the other
hand, if integration is not performed, the static execution
graph cannot dynamically adjust its size to accommodate
temporary changes. For these reasons, the latest version of
vLLM has deprecated this mechanism. Moreover, without
an I/O-aware KV cache allocator to increase transfer granu-
larity, the bottleneck of swapping lies in the overhead of the
cudaMemcpyAsync dispatch stage rather than the execution
stage as mentioned in Challenge #1. This issue cannot be
resolved by layer-wise swapping.

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

FastServe (Wu et al., 2023) adopts iteration-wise transmis-
sion to predict and pre-load KV cache while supporting
inference CUDA graph execution for GPU efficiency. How-
ever, predicting suitable requests for preemptive swap out
can be challenging. Additionally, it does not achieve asyn-
chronous dispatch between swapping APIs and inference
kernels, thus failing to resolve the major part of overhead
as stated in Challenge #1. It also overlooks the difficulty of
maintaining a coherent order of swapping dispatches. We
will discuss it in this section.

Built upon the Dynamic Block Group Manager from the
first section, we now introduce the Multithreading Swap
Manager to comprehensively address Challenge #2 in an
iteration-wise manner.

Adaptive Swapping Strategy. The Swap Manager em-
ploys a dynamic swapping strategy based on the system’s
current state. To enable informed decision-making, a pro-
filer monitors key metrics such as the number and size of
ongoing swapping operations over a recent time window.
We observe that asynchronous handling of preemption is not
always the optimal solution. While asynchronous swapping
in generally reduces idle time and improves efficiency, it’s
not always the best approach. Specifically, when the total
number of requests is high, but each request is relatively
short, asynchronous swap in may degrade token generation
efficiency. In such cases, it is more beneficial to perform syn-
chronous swap in, as the overhead of swapping is minimal
compared to the potential gain from processing a larger num-
ber of tokens. This adaptive strategy carefully balances the
swapping overhead with token generation efficiency, dynam-
ically switching between asynchronous and synchronous
swap in based on workload run time metrics.

Overcoming Python GIL Limitation and Ensuring
Conflict-free Dispatch Order of Multi-stream CUDA
Runtime APIs. We observed that Python-based call stacks
in many serving systems introduce the Global Interpreter
Lock (GIL), which bottlenecks parallel execution of asyn-
chronous tasks by limiting CPU-side kernel dispatch or API
dispatch. While the execution stage remains unaffected,
the restricted dispatch reduces the benefits of asynchronous
optimizations and constrains overall system throughput and
scalability. To mitigate this, we offloaded the dispatch pro-
cess to C++, where we created a thread pool and used
worker threads to dispatch the APIs and create CUDA
events, thereby gaining fine-grained control over the entire
process.

We also identified another implementation challenge: In the
same CUDA context, the dispatch order of CUDA mem-
cpy APIs across multiple streams needs to manage in a
proper way. The key insight here is that in the execu-
tion stream, cudaMemcpyAsync calls will also be issued.
If the swapping stream has already dispatched a large num-

ber of cudaMemcpyAsync operations, even if the inference
stream has higher priority, it cannot preempt the execution
stage of cudaMemcpyAsync in the swapping stream. This
results in inference stalls and GPU remains idle because
the cudaMemcpyAsync in the inference stream must wait for
I/O resource to become available in order to complete. To
address this issue, we implemented fine-grained synchro-
nization control. After a certain number of dispatches, we
perform synchronization to ensure that high-priority APIs
can be inserted into the dispatch queue and dispatched suc-
cessfully. Although this introduces a small synchronization
overhead, it is insignificant compared to the performance
gains achieved through overlap.

KV Cache Conflict Resolution in Asynchronous Swap-
ping. While asynchronous KV cache transfers enable the
overlap of swapping and inference operations, boosting to-
ken generation efficiency, they also introduce the risk of
KV cache conflicts between the KV cache of ongoing swap-
ping requests and newly allocated KV cache from running
requests. To address this issue, we leverage the Dynamic
Block Group Manager to monitor block group allocation
and usage. When KV cache conflict is detected, the Swap
Manager synchronizes KV cache transfer event in a fine-
grained manner, minimizing resource contention and resolv-
ing KV cache conflicts. This ensures efficient operation
during overlapping swapping and inference.

GPU Utilization Improvement. By allowing certain swap-
ping operations to occur in parallel with active inference
processes, the Swap Manager reduces idle time and en-
hances overall throughput. This asynchronous handling
ensures that the majority of requests can proceed without
being delayed by swapping dependencies. As shown in
Figure 6, in (a), no asynchronous preemption is applied,
meaning all operations, such as memory copies (Memcpy
HtoD), cudaGraphLaunch, and cudaGraph execution, are
performed sequentially. This leads to inefficient resource
utilization, as tasks are serialized, resulting in longer overall
inference time.

In (b), only the execution stage of cudaMemcpyAsync is
asynchronous, while the cudaMemcpyAsync dispatch re-
mains synchronous. This limits the efficiency gains as the
dispatch phase still causes delays and prevents full concur-
rency.

In contrast, (c) implements a fully asynchronous ap-
proach, where both the dispatch and execution stage of
cudaMemcpyAsync are asynchronous to the inference. This
allows for improved concurrency and more efficient re-
source utilization, leading to better overall performance.

Algorithm Explanation. Algorithm 1 details the opera-
tional workflow of the Multithreading Swap Manager. The
process starts by monitoring ongoing swap in operations.

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Algorithm 1 Multithreading Swap Manager Algorithm
Initialization:

running← InitializeQueue()
swapped← InitializeQueue()
ongoing swap in← InitializeQueue()

Recent Swapping Information
r info← InitializeQueue()

for each iteration do
Step 1: Verify swap In Completion
for each req in ongoing swap in do

if IsCompleted(req) then
Move(req, ongoing swap in, running)

end if
end for
Step 2: Handle swap In Requests
if HasSwapIn(swapped) then

ExecuteSwapIn(swapped)
UpdateQueue(r info, swapped, “SwapIn”)

end if
Step 3: Handle swap Out Requests
if HasSwapOut(running) then

ExecuteSwapOut(running)
UpdateQueue(r info, running, “SwapOut”)
Step 3.1: Conflict Detection
if DetectConflict(running, swapped) then

Synchronize(running, swapped)
end if

end if
Step 4: Dynamic Swapping (Async Or Sync)
decision← Strategy(running, swapped, r info)
if decision == “yes” then

MovePending(running, ongoing swap in)
else

SwapInStreamSynchronize()
end if

end for

Once an asynchronous swap in is completed, the correspond-
ing request is moved from the ongoing swap in queue to
the running queue, and the r info queue is updated ac-
cordingly. The manager then proceeds to handle both swap
in and swap out requests. After completing swap out op-
erations, it checks for any conflicts between the recently
swap out requests and the ongoing swap in requests. If a
conflict is detected, the manager performs synchronization
to resolve the issue. Lastly, the algorithm employs a dy-
namic execution strategy, leveraging real-time profiling to
optimize decision-making at each iteration. It evaluates re-
cent swapping metrics from the recent swap info queue
to determine whether to asynchronously proceed the swap
in or to initiate a synchronization of the swap in stream to
synchronize it.

3.3 KV Cache Reuse Mechanism for Efficient
Multi-turn Conversations

In the last optimization of our design, to tackle Challenge
#3, we introduce the KV Cache Reuse Mechanism to reuse
the KV cache copies in CPU and handle partial cache con-

tamination, where the KV cache in CPU memory is con-
taminated by higher-priority requests. This mechanism en-
ables the reuse of partially valid KV cache, minimizing
preemption overhead by reducing the volume in resource-
constrained scenarios.

KV Cache Reuse Mechanism. Our mechanism focuses on
retaining and efficiently managing KV cache by keeping a
copy of the KV cache in CPU memory. To solve the Chal-
lenge #3, we designed an algorithm that effectively tracks
the status of KV cache. To ensure the validity of reused
KV cache, we implement a block-group-based tracking sys-
tem that monitors which segments of the KV cache have
been contaminated by higher-priority requests. So we can
identified uncontaminated block groups that are eligible for
reuse, preventing erroneous data access. As shown in Fig-
ure 7, during preemption, the KV Cache Reuse Mechanism
selectively swaps out only the necessary portions of the KV
cache, minimizing the KV cache swapping between CPU
and GPU memory and reducing preemption latency. Fur-
thermore, the system preallocates additional memory space
for the next turn’s swap out increment, which is adjacent
to KV cache copy already stored in CPU memory. This
proactive allocation improves memory continuity, prevents
fragmentation, and ensures smoother transitions between
turns. In summary, compared to vLLM this mechanism not
only reduces the amount of data that needs to be swapped out
during preemption, but also successfully reuses the partially
valid KV cache in the constrained scenarious, eliminates
the need for recomputing KV cache for repeated tokens,
and significantly reduces the prefilling time—the latency
involved in generating the first token of a new turn.

CPU GPUSWAP OUT

KVCache Fully Reuseable
Memory Used by Other Requests
KVCache Increment Transferable to
Preallocated Memory for Continuity

KVCache Partially Reuseable

Figure 7. Workflow of the KV Cache Reuse Mechanism.

4 METHODOLOGY

We evaluate FastSwitch using the LLaMA-8B and Qwen-
32B models on NVIDIA A10 and A100 GPUs. The setup
includes 60 GB of CPU swap space per GPU to enable
efficient context switching. Leveraging PCIe 4.0 with a x16
interface, each GPU achieves a theoretical bandwidth of 32
GB/s per direction (64 GB/s bidirectional).

4.1 Workloads

We utilize the Multi-Round ShareGPT (ShareGPT, 2024)
dataset to simulate extended, realistic conversations, as de-

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

picted in Figure 4. To preserve authenticity, we retain the
original input and output lengths. From the dataset, we ran-
domly select 1,000 multi-turn conversations and generate
request arrival traces based on a Poisson distribution with a
mean rate of 1 request per second.

4.2 Context Switching Trace Simulation

As there are no publicly available context switching traces
for Large Language Model as a Service (LLMaaS) work-
loads, we simulate two patterns of context switching to
assess system behavior under different conditions. These
simulations include:

Random: In this pattern, context switching occurs unpre-
dictably, with priority changes happening arbitrarily. There
is no temporal correlation, simulating a dynamic and uncon-
trolled environment where the workload characteristics are
highly unpredictable.

Markov: This pattern introduces temporal locality into
the context switching process. Requests that have been fre-
quently or recently served are given higher priority, reflect-
ing a more structured scenario where the workload exhibits
some continuity or locality in its usage patterns.

In both cases, the priorities are determined offline, meaning
they are precomputed based on the simulation patterns rather
than dynamically adjusted during runtime. However, our
design, FastSwitch, does not rely on these offline priority
predictions. It remains flexible and adaptive, allowing for
dynamic scheduling based on the actual runtime demands
of the specified use case. This design choice ensures that
FastSwitch can efficiently handle a wide range of context
switching behaviors, from highly unpredictable scenarios to
those that follow more predictable patterns.

4.3 Baselines and Metrics

We compare FastSwitch with vLLM. The key metrics used
for evaluation include the P95, P99, and P99.9 TTFT, which
measure the latency experienced by the 95th, 99th, and
99.9th percentiles of requests before the first token of each
turn is generated. In addition, we evaluate the P99.9 TBT,
which captures the latency between consecutive tokens in
the generated responses. Furthermore, we compare the end-
to-end throughput of both systems. These metrics offer a
comprehensive view of the system’s performance, especially
under different load conditions and priority schemes.

4.4 Implementation

FastSwitch is built on vLLM with over 5,000 lines of
Python and 1,000 lines of CUDA/C++ code. Utilizing
“prefill with prefix” triton kernel from lightllm(ModelTC,

2024), FastSwitch supports multi-turn conversations. We
developed a priority-based scheduler that enhances exist-
ing scheduling policies by dynamically adjusting priorities
and managing requests queues in real-time. Based on the
priority-update frequency, at the iteration where a prior-
ity change occurs, the scheduler reorders requests across
waiting, running, and swapped queues to meet the updated
priority requirements. During other iterations, it adheres to
the most recently updated prioritiy to handle scheduling and
service execution.

5 EVALUATION

5.1 End-to-End Performance

We evaluate the end-to-end performance of FastSwitch by
comparing it with the baseline under appropriate priority-
update frequency. For Qwen-32B, we set the priority-update
frequency to 0.02 (once every 50 iterations), following the
study in Andes(Liu et al., 2024a) to maximize the quality
of experience (QoE) for the round-robin pattern. On the
other hand, for a smaller model LLaMA-8B, we double the
priority-update frequency to 0.04 (once every 25 iterations)
to better highlight the optimizations in context switching
achieved by our design, especially under more frequent
context switching.

5.1.1 Latency Metrics

We begin by analyzing latency metrics, including P95, P99,
P99.9 TTFT, and P99.9 TBT, for both the LLaMA-8B
and Qwen-32B models under Markov and Random con-
text switching patterns using FastSwitch.

As illustrated in Figure 8 (a)–(b), for the LLaMA-8B model,
FastSwitch demonstrates substantial improvements in la-
tency across both context switching patterns. Under the
Markov trace, FastSwitch achieves speedups of 5.8×, 4.1×,
3.7×, and 2.0× for P95 TTFT, P99 TTFT, P99.9 TTFT,
and P99.9 TBT, respectively. When evaluated with the
Random trace, FastSwitch attains speedups of 4.3×, 3.7×,
2.5×, and 2.7× for the same metrics. These results indicate
that FastSwitch effectively manages temporal locality in the
Markov trace while maintaining robust performance under
unpredictable priority changes in the Random trace.

As illustrated in Figure 8 (c)–(d), for the Qwen-32B model,
FastSwitch exhibits considerable performance enhance-
ments as well. In the Markov scenario, FastSwitch achieves
speedups of 1.7×, 1.6×, 1.4×, and 11.2× for P95 TTFT,
P99 TTFT, P99.9 TTFT, and P99.9 TBT, respectively. Under
the Random trace, FastSwitch exhibits speedups of 1.4×,
1.5×, 1.4×, and 3.6× for the same metrics.

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

P95_TTFT
P99_TTFT

P99_9_TTFT
P99_9_TBT

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

(a) LLaMA-8B & Markov

P95_TTFT
P99_TTFT

P99_9_TTFT
P99_9_TBT

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

(b) LLaMA-8B & Random

P95_TTFT
P99_TTFT

P99_9_TTFT
P99_9_TBT

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

(c) Qwen-32B & Markov

P95_TTFT
P99_TTFT

P99_9_TTFT
P99_9_TBT

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(N
or

m
al

iz
ed

)

(d) Qwen-32B & Random

Markov Random
0.5

0.7

0.9

1.1

1.3
Th

ro
ug

hp
ut

 (N
or

m
al

iz
ed

)

(e) LLaMA-8B Throughput

Markov Random
0.5

0.7

0.9

1.1

1.3

1.5

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

(f) Qwen-32B Throughput

vLLM Dynamic Block Group Only Dynamic Block Group
+ KV Cache Reuse FastSwitch

Figure 8. Comparison of TTFT, TBT, and throughput between FastSwitch and baseline under different models and traces.

5.1.2 End-to-End Throughput Improvement

In addition to latency metrics, we evaluate the end-to-end
throughput of FastSwitch under varying priority-update fre-
quencies for both models. As illustrated in Figure 8 (e)–(f),
FastSwitch consistently enhances throughput across differ-
ent priority-update frequencies.

For the LLaMA-8B model, FastSwitch achieves up to a
1.334× increase in throughput under high priority-update
frequency across both patterns, maintaining efficient token
generation without significant delays. Similarly, the Qwen-
32B model experiences up to a 1.444× improvement in
throughput. The larger throughput gains observed for Qwen-
32B are attributed to its higher swapping latency compared
to its inference time, which FastSwitch effectively mitigates
through the three optimizations.

5.1.3 Summary

The contributions of each sub-design in FastSwitch, are
critical in reducing latency and improving throughput.
FastSwitch consistently outperforms other configurations
across different models and context switching patterns,

demonstrating its scalability and effectiveness in manag-
ing complex workloads.

0.00 0.01 0.02 0.03 0.04 0.05
Priority Update Frequency

0.005

0.010

0.015

0.020

0.025

R
at

io

vLLM
Dynamic Block Group Only
Dynamic Block Group + KV Cache Reuse
FastSwitch

Figure 9. Show the call stack overhead after applying each opti-
mization.

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

5.2 Call Stack Overhead Analysis

Figure 9 illustrates the call stack overhead as priority-update
frequency increases. Each part of FastSwitch introduces
optimizations that slightly raise overhead but improve per-
formance. Despite the gradual increase, the overhead con-
tributes to no more than a 1 % rise in end-to-end time. This
indicats a minimal impact on overall system efficiency. As
the frequency increases, the call stack overhead also in-
creases. This is due to the need to resolve more KV cache
conflicts and synchronize more ongoing swap-in requests
dispatched in pass iterations by the end of the schedule. This
results in some context switching overhead being added to
the call stack overhead. However, pure call stack overhead
remains within 1 %.

5.3 Breakdown and Sensitivity Analysis

To gain deeper insights into the effectiveness of our pro-
posed system and its sensitivity to various parameters, we
perform a series of breakdown analysis experiments using
the LLaMA-8B model on the ShareGPT dataset, running
on a single A10 GPU. The average request rate is set to 1.0
req/s.

5.3.1 Dynamic Block Group Manager

Effectiveness of the Dynamic Block Group Manager.
The Dynamic Block Group Manager employs a coarse-
grained KV cache allocation approach, resulting in sim-
plified swapping operations and reduced context switching
overhead, as demonstrated by the ratio of context switching
overhead to end-to-end latency shown in Figure 10. The
coarse-grained approach shows up to 3.11× context switch-
ing speedup compared to the vLLM baseline across various
frequencies.

0.001
0.002

0.005
0.010

0.020
0.030

0.040
0.067

Priority Update Frequency

0.0

0.1

0.2

0.3

0.4

R
at

io

Coarse
vLLM

Figure 10. Context switching
overhead across priority-update
frequencies.

0.005
0.010

0.013
0.020

0.030
0.040

Priority Update Frequency

0.8

0.9

1.0

1.1

1.2

G
ra

nu
la

rit
y

min
max

Figure 11. Sensitivity study.

Initial Dynamic Block Group Size Sensitivity. We set
the initial block group size to 1,000 tokens, or about 70
vLLM blocks. A sensitivity analysis, shown in Figure 11,
examines the average swap in and swap out granularity

across initial block group sizes (64 to 3,000 tokens) and
varying priority update frequencies. The values are normal-
ized, with the minimum set to 1. The results show that for a
fixed priority-update frequency, changing the initial block
group size causes no more than a 15.13% difference in gran-
ularity. This indicates that the system is robust to variations
in block group size. Granularity is mainly influenced by
the GPU memory allocated to the KV cache for each task,
making GPU memory a key factor in swapping efficiency.

80 90 93 95 99
Percentile

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Baseline
Fastswitch

Figure 12. Efficiency compari-
son.

10 35 60 85 110 135
Swap Space (GB)

0.02

0.03

0.04

R
at

io

Figure 13. Sensitivity study.

5.3.2 Multithreading Swap Manager

Token Generation Efficiency. The asynchronous swap-
ping facilitated by the Multithreading Swap Manager im-
proves token generation efficiency. In Figure 12, we com-
pare the token generation efficiency between the baseline
and FastSwitch. After introducing the Multithreading Swap
Manager, the system performs more iterations with reduced
latency. However, the increased number of iterations com-
plicates direct comparison with the baseline. To address
this, we divided the inference process into fixed-iteration
intervals, with an interval size of 5 iterations, calculating the
number of new tokens generated and the time taken within
each interval. This allows us to determine the token gener-
ation efficiency per unit of time for each interval. We then
compared the token generation efficiency across different
quantiles for both the baseline and the Multithreading Swap
Manager. The results show that FastSwitch consistently
achieves higher token generation efficiency across almost
all quantiles, with particularly significant improvements at
higher percentiles - showing a 21.8% increase at P99 and
a 12.6% increase at P99.9 compared to the baseline. These
results demonstrate the effectiveness of the Multithread-
ing Swap Manager in minimizing the impact of KV cache
transfers on overall throughput.

Table 1. Microbenchmark comparison.

Metric Traditional Swap Out Optimized Swap Out with
KV Cache Reuse

Num blocks 122030 58187
Num operations 13076 10713
Granularity 9.3 5.43
Latency 15.5s 6.7s

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

5.3.3 KV Cache Reuse Mechanism

Reduction in swap Out Size. The KV Cache Reuse
Mechanism significantly reduces the total number of swap
out blocks by 53%, as shown in Table 1, directly correlating
with lower preemption latency and stalled time.

Sensitivity of CPU Memory Size on Context Switching
Overhead. We evaluated how varying CPU memory sizes
for KV cache copies impact the KV Cache Reuse Mecha-
nism by measuring context switching overhead. As shown in
Figure 13, increasing memory allows less KV cache copies
to be contaminated, reducing context switching overhead by
enabling greater cache reuse and minimizing redundant KV
cache swapping

Our findings show that larger memory allocation reduce
overhead by supporting more cache reuse across conver-
sation turns. However, beyond 60 GB, further increases
yield diminishing returns, suggesting 60 GB as an optimal
allocation for this setup.

6 RELATED WORK

6.1 Scheduling, SLOs, and Fairness in LLM Serving

Maintaining fairness and meeting SLOs in LLM serving sys-
tems is crucial for performance. Sheng et al. (Sheng et al.,
2024) proposed VTC, a fair scheduler for LLM serving that
handles unpredictable request lengths and dynamic batch-
ing, ensuring fairness at the token level. Liu et al. (Liu et al.,
2024a) proposed Andes, which balances latency and quality
in LLM-based text streaming services through optimized
scheduling. Wu et al. (Wu et al., 2023) introduced a Fast Dis-
tributed Inference Serving system that improves scheduling
and resource management in distributed environments.

6.2 KV Cache Management

KV cache (Liu et al., 2024c; Qin et al., 2024; Ge et al.,
2023) stores precomputed key-value projections from previ-
ous tokens during Transformer model inference. Efficient
KV cache management accelerates LLM inference, particu-
larly in multi-call and batched executions. The cache hold
intermediate key-value pairs for self-attention (Shaw et al.,
2018), enabling reuse of computations during token gen-
eration. vLLM (Kwon et al., 2023) employs paging for
memory-efficient KV cache management, enabling large
batch processing through dynamic GPU memory paging.
SGLang (Zheng et al., 2023) introduces RadixAttention, or-
ganizing KV cache in a radix tree for systematic cache reuse
across shared-prefix requests, with LRU-based eviction. Un-
like vLLM’s batch-level focus, RadixAttention handles both
intra-program parallelism and multi-call workflows.

Other systems like TensorRT-LLM (NVIDIA, 2024) and

Hugging Face Accelerate (Hugging Face, 2024) optimize
throughput via dynamic batch sizing, but lack fine-grained
prefix reuse and intra-program parallelism capabilities found
in vLLM and SGLang.

7 CONCLUSION

We present FastSwitch, a serving system that optimizes
scheduling in LLM inference through advanced KV cache
management and preemption design. FastSwitch enhances
preemptive context switching in LLM serving systems, min-
imizing performance penalties in terms of TTFT, TBT, and
throughput.

Compared to vLLM, evaluations show FastSwitch delivers
various percentiles of TTFT speedups of 1.4-5.8×, P99.9
TBT speedup of up to 11.2×, and the throughput increase
of up to 1.44×. These gains highlight FastSwitch’s ability
to ensure fairness and enhance user experience in dynamic,
large-scale LLM deployments.

In conclusion, FastSwitch provides an efficient, solution
for preemptive scheduling, reducing latency and boosting
throughput while maintaining fairness.

REFERENCES

Agrawal, A., Panwar, A., Mohan, J., Kwatra, N., Gulavani,
B. S., and Ramjee, R. Sarathi: Efficient llm inference
by piggybacking decodes with chunked prefills. arXiv
preprint arXiv:2308.16369, 2023.

Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra, N.,
Gulavani, B. S., Tumanov, A., and Ramjee, R. Taming
throughput-latency tradeoff in llm inference with sarathi-
serve. arXiv preprint arXiv:2403.02310, 2024.

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan, A. A.,
Li, C., Li, D., Zheng, E., Rasley, J., Smith, S., Ruwase,
O., and He, Y. Deepspeed inference: Enabling efficient
inference of transformer models at unprecedented scale,
2022. URL https://arxiv.org/abs/2207.00032.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Gao, B., He, Z., Sharma, P., Kang, Q., Jevdjic, D., Deng,
J., Yang, X., Yu, Z., and Zuo, P. Attentionstore:
Cost-effective attention reuse across multi-turn conver-
sations in large language model serving. arXiv preprint
arXiv:2403.19708, 2024.

https://arxiv.org/abs/2207.00032

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Gong, C., He, D., Tan, X., Qin, T., Wang, L., and Liu,
T.-Y. Frage: Frequency-agnostic word representation.
Advances in neural information processing systems, 31,
2018.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hugging Face. Hugging face large language models (llms).
https://huggingface.co/, 2024. Accessed: 2024-10-
28.

Koh, J. Y., Fried, D., and Salakhutdinov, R. R. Generating
images with multimodal language models. Advances in
Neural Information Processing Systems, 36, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Larimi, S. S. N., Salami, B., Unsal, O. S., Kestelman, A. C.,
Sarbazi-Azad, H., and Mutlu, O. Understanding power
consumption and reliability of high-bandwidth memory
with voltage underscaling, 2020. URL https://arxiv.
org/abs/2101.00969.

Liu, J., Wu, Z., Chung, J.-W., Lai, F., Lee, M., and Chowd-
hury, M. Andes: Defining and enhancing quality-of-
experience in llm-based text streaming services, 2024a.
URL https://arxiv.org/abs/2404.16283.

Liu, N., Chen, L., Tian, X., Zou, W., Chen, K., and Cui, M.
From llm to conversational agent: A memory enhanced
architecture with fine-tuning of large language models,
2024b. URL https://arxiv.org/abs/2401.02777.

Liu, Y., Li, H., Cheng, Y., Ray, S., Huang, Y., Zhang, Q.,
Du, K., Yao, J., Lu, S., Ananthanarayanan, G., et al.
Cachegen: Kv cache compression and streaming for fast
large language model serving. In Proceedings of the ACM
SIGCOMM 2024 Conference, pp. 38–56, 2024c.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher,
R., Amatriain, X., and Gao, J. Large language models: A
survey. arXiv preprint arXiv:2402.06196, 2024.

ModelTC. Lightllm: A lightweight framework for
large language model inference. https://github.com/

ModelTC/lightllm, 2024. A Python-based LLM infer-
ence and serving framework with lightweight design, easy
scalability, and high-speed performance.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis, 2023. URL https://arxiv.org/abs/2203.13474.

NVIDIA. Nvidia tensorrt-llm. https://docs.nvidia.
com/tensorrt-llm/index.html, 2024. Accessed:
2024-10-28.

OpenAI. Chatgpt. https://openai.com/chatgpt, 2024.
Accessed: 2024-10-28.

Patke, A., Reddy, D., Jha, S., Qiu, H., Pinto, C., Cui, S.,
Narayanaswami, C., Kalbarczyk, Z., and Iyer, R. One
queue is all you need: Resolving head-of-line block-
ing in large language model serving. arXiv preprint
arXiv:2407.00047, 2024.

Qin, R., Li, Z., He, W., Zhang, M., Wu, Y., Zheng, W., and
Xu, X. Mooncake: Kimi’s kvcache-centric architecture
for llm serving. arXiv preprint arXiv:2407.00079, 2024.

ShareGPT. Sharegpt: Share your wildest chatgpt conversa-
tions with one click. https://sharegpt.com/, 2024.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. arXiv preprint
arXiv:1803.02155, 2018.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single gpu. In International Conference
on Machine Learning, pp. 31094–31116. PMLR, 2023.

Sheng, Y., Cao, S., Li, D., Zhu, B., Li, Z., Zhuo, D., Gonza-
lez, J. E., and Stoica, I. Fairness in serving large language
models. In 18th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 24), pp. 965–988,
2024.

Sun, B., Huang, Z., Zhao, H., Xiao, W., Zhang, X., Li, Y.,
and Lin, W. Llumnix: Dynamic scheduling for large
language model serving, 2024. URL https://arxiv.
org/abs/2406.03243.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Von Puttkamer, E. A simple hardware buddy system mem-
ory allocator. IEEE Transactions on Computers, C-24
(10):953–957, 1975. doi: 10.1109/T-C.1975.224100.

https://huggingface.co/
https://arxiv.org/abs/2101.00969
https://arxiv.org/abs/2101.00969
https://arxiv.org/abs/2404.16283
https://arxiv.org/abs/2401.02777
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://arxiv.org/abs/2203.13474
https://docs.nvidia.com/tensorrt-llm/index.html
https://docs.nvidia.com/tensorrt-llm/index.html
https://openai.com/chatgpt
https://sharegpt.com/
https://arxiv.org/abs/2406.03243
https://arxiv.org/abs/2406.03243

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, B., Zhong, Y., Zhang, Z., Huang, G., Liu, X., and Jin,
X. Fast distributed inference serving for large language
models. arXiv preprint arXiv:2305.05920, 2023.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

Yin, W., Xu, M., Li, Y., and Liu, X. Llm as a system service
on mobile devices. arXiv preprint arXiv:2403.11805,
2024.

Zheng, L., Yin, L., Xie, Z., Huang, J., Sun, C., Hao Yu, C.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Efficiently programming large language models using
sglang. arXiv e-prints, pp. arXiv–2312, 2023.

Zhu, W., Liu, H., Dong, Q., Xu, J., Huang, S., Kong, L.,
Chen, J., and Li, L. Multilingual machine translation with
large language models: Empirical results and analysis,
2024. URL https://arxiv.org/abs/2304.04675.

https://arxiv.org/abs/2304.04675

